
An Approximation for Job Scheduling on Cloud
with Synchronization and Slowdown Constraints

Dejun Kong1, Zhongrui Zhang1, Yangguang Shi2, Xiaofeng Gao1,∗

1Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
2School of Computer Science and Technology, Shandong University, Qingdao, China
{kdjkdjkdj99,2020zzr}@sjtu.edu.cn, shiyangguang@sdu.edu.cn, gao-xf@cs.sjtu.edu.cn

Abstract—Cloud computing develops rapidly in recent years
and provides service to many applications, in which job schedul-
ing becomes more and more important to improve the qual-
ity of service. Parallel processing on cloud requires different
machines starting simultaneously on the same job and brings
processing slowdown due to communications overhead, defined
as synchronization constraint and parallel slowdown. This pa-
per investigates a new job scheduling problem of makespan
minimization on uniform machines and identical machines with
synchronization constraint and parallel slowdown. We first con-
duct complexity analysis proving that the problem is difficult
in the face of adversarial job allocation. Then we propose a
novel job scheduling algorithm, United Wrapping Scheduling
(UWS), and prove that UWS admits an O(logm)-approximation
for makespan minimization over m uniform machines. For the
special case of identical machines, UWS is simplified to Sequential
Allocation, Refilling and Immigration algorithm (SARI), proved
to have a constant approximation ratio of 8 (tight up to a factor
of 4). Performance evaluation implies that UWS and SARI have
better makespan and realistic approximation ratio of 2 compared
to baseline methods United-LPT and FIFO, and lower bounds.

Index Terms—job scheduling, cloud computing, synchroniza-
tion constraint, parallel slowdown

I. INTRODUCTION

Along with the rapid development of data centers and cloud
service, cloud computing is extensively used in various kinds
of computer services nowadays [1]. Clients upload pending
jobs to the cloud service and get the processing results back
from it, no need for considering the process of computing. The
integration of data storage and computing resources provides
the clients with better network resource management and
lower cost. However, larger scales of network resources and
service demands become more and more challenging for the
service management [2]. In this problem, job scheduling,
which mainly concentrates on the allocation of different jobs
to parallel machines or threads, is a critical part because a
good scheduling can improve both the resource utilization and
processing efficiency [3], studied by many researchers.

Motivated by applications in modern cloud computing, this
paper studies job scheduling under the settings where each job
contains multiple indivisible parts that can be processed simul-
taneously on parallel machines. As a typical job processed
on cloud in recent years, the training of machine learning
methods is widely employed in a variety of applications like

image recognition [4], etc. The training process can be either
time-consuming or very fast, depending on the data scale and
model complexity, which contributes to a large variance of the
processing time of different jobs. To accelerate the training
process, distributed neural networks training is developed and
studied [5], where the training instance can be split into
several. As the training of a complex model usually contains
several processes [6], one process has to be accomplished on
one machine, which cannot be split any more. Such a part of
one job is defined as subjob. Then job scheduling is to allocate
these indivisible subjobs to different parallel machines. Similar
scenarios of job scheduling problem on parallel machines
to decide how to allocate subjobs to parallel machines with
minimum makespan are discussed in [7].

In the procedure of job processing on cloud, the clients
are usually required to affirm the amount of the parallel
computing resource [8]. A practical reason is that clients
need an accurate and acceptable cost on resource allocation
in advance. Dynamic computing resource allocation improves
the computing efficiency but cannot give a reliable cost pre-
diction in complex cloud computing environment. Therefore,
fixed parallel computing resource allocation is still employed
in many cloud computing scenarios, namely, allocating all
computing resources at the very beginning and processing
on them until work is done. This means that the parallel
computing resources are allocated to jobs simultaneously
following the requests and hence subjobs assigned to different
parallel resources always start at the same time (the time
resources are allocated). We denote such synchronous starting
as synchronization constraint. Similarly, MPI jobs scheduled
on supercomputers may also be subject to synchronization
constraint as MPI jobs are typically tightly coupled and syn-
chronize often by barriers or point-to-point communication [9].
If one delay, others would soon stop and wait for it.

When parallel processing of a job is in progress, subjobs
have to exchange data with each other in real time, which
brings network transmission delay and results in slowdown [5],
[10]. A significant cost is the communication cost (e.g. data-
shuffle [11]) of transmitting the intermediate data of a job
among different machines [12]. It is indicated in [13] that
it spends more time processing jobs with multiple threads on
Spark due to frequent switching among threads. To capture this

IE
EE

 IN
FO

C
O

M
 2

02
3

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

9-
8-

35
03

-3
41

4-
2/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
53

93
9.

20
23

.1
02

29
07

8

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2023 at 08:16:33 UTC from IEEE Xplore. Restrictions apply.

feature in parallel processing, here we introduce a slowdown
function g : N>0 7→ R>0 and model the speed of a machine j
in processing a job i as sj ·g(ei), where sj is the full speed of
machine j, and ei is the number of machines used by subjobs
of i. Data driving approaches are used to obtain a proper
description of g(·). In particular, we conduct experiments
shown in Figure 1 on five benchmarks on the platform of
PARSEC 3.0 [14] to observe slowdown versus thread number,
deriving a slowdown function g(ei) = 1− δ(ei− 1), where ei
is thread number, δ > 0 is an input slowdown coefficient.

Fig. 1. Parallel slowdown experiment: Five benchmarks on data mining (Fre-
qmine), Streamcluster and high-performance computing (Barnes, Raytrace,
Volrend) are tested with δ = 0.0421, 0.0638, 0.0227, 0.0120, 0.0577.

As a whole, in this paper we consider a new variation of
job scheduling problem on parallel machines induced from
cloud computing. Jobs with indivisible subjobs are submitted
to cloud for processing. Subjobs of the same job on the
same machine should be processed continuously in a non-
preemptive manner. The start time of a job i on a machine
j refers to the start time of the first subjob of i on j, and
it is required that the start time of a job should be the
same on all the machines that it uses, namely, satisfying
the synchronization constraint. During processing, the speeds
of machines are given by the above formula involving the
slowdown function. The parallel machines can be identical or
uniform, because heterogeneous computing resources, which
usually exist in large-scale data centers after years of updates,
and different initialization of virtual machines, can lead to
different executing speeds for parallel processing. Our goal is
to find a scheduling strategy assigning subjobs to appropriate
machines so that the overall finishing time is minimized. An
introductory example is illustrated in Figure 2. A feasible
solution shown in Figure 3 illuminates a solution.

job1

job2

job3

10MB

b1b1b1b1

20MB

b2b1b2b1

16MB

b3b1b3b1

9MB
b1b2b1b2

16MB
b2b2b2b2

10MB

b1b3b1b3

20MB 15MB6MB

b2b3b2b3

p1
speed 5MB/s

p2
speed 4.5MB/s

p3
speed 4MB/s

p4
speed 5MB/s

b4b3b4b3b3b3b3b3

Fig. 2. A toy example: Three jobs with various sizes of subjobs require to be
scheduled over four heterogeneous machines with different computing speeds.
Due to the synchronization, communication and file management issues, the
parallel computing speed decreases by a slowdown coefficient δ = 0.03.

Fig. 3. A feasible solution for Figure 2. Here job1 has been assigned to
three machines 1, 2, 3; job2 to one single machine 4; and job3 to all four
machines. Idle slots are sacrificed due to the synchronization constraint.

Our contributions are illustrated as follow. First, we for-
mulize the model of the problem and investigate the hard-
ness of this problem, proving that the scheduling problem
with the synchronization constraint admits no O

(
n

2(log n)3/4+ϵ

)
-

approximation under a conventional computational hardness
assumption. Then we consider parallel processing and design
an algorithm with three phases: Sequential Allocation, Refill-
ing, and Immigration (SARI) for identical machines, eventually
achieving a feasible solution with a constant approximation
ratio of 8. In all, SARI balances the gain in the parallel
speedup and the drawback of synchronization and slowdown.
After that, we develop another subroutine called Wrapping to
utilize SARI on uniform machines. Together with SARI, the
entire framework is named as United Wrapping Scheduling or
United We Stand (UWS), trying to unite subjobs of one job
together, which is proved to have an O(logm)-approximation
ratio. Finally, we conduct extensive numerical evaluations to
illuminate the performance of SARI and UWS. Sensitivity
analysis upon different parameters and the performance are
explored with synthetic datasets. Results imply the superiority
of the proposed algorithms and a much better real approx-
imation ratio. sTo the best of our knowledge, we are the
first to provide polylog-approximation for uniform machine
scheduling problem with synchronization and slowdown.

II. RELATED WORK

Job scheduling is a classical problem studied for tens of
years. [10] introduces a bulk-synchronous parallel model as
a bridge between hardware and software in computer, which
enables task speedup by parallel processing, making parallel
job scheduling in computing have practical significance. [15]
first studies P ||Cmax and proposes a greedy-based algorithm
with a constant approximation ratio of 2, which allocates
job i to machine j with the least load so far. Later, [16]
extends the above algorithm to Q||Cmax and proves to have an
O(logm)-approximation ratio. Meanwhile, they also design
an 8-approximate algorithm for Q||Cmax, called ASSIGN-
R. ASSIGN-R works with an estimation Λ ≥ OPT of the
optimal makespan OPT and allocates job i to the slowest
machine. According to the classification of [9], the scheduling

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2023 at 08:16:33 UTC from IEEE Xplore. Restrictions apply.

problem discussed in this paper belongs to moldable job
scheduling. Without considering indivisible subjob setting,
the approximation ratio of related algorithms is continuously
improved from 2 [17] to 3

2 + ϵ [18], [19]. As for schedul-
ing on uniform machines, [20] shows that there is a PTAS
scheduling plan for an unconstrained problem, while [21]
proposes that the scheduling can even be improved to EPTAS
in recent progress. [22] proposes Hibernation-Aware Dynamic
Scheduler to schedule an integration of independent tasks with
deadline constraints.

As for synchronization and slowdown constraint, some
similar studies have been conducted in recent years more or
less. [23] considers similar synchronization constraint, where
parallel jobs are completed at the same time on all processors.
In [10], synchronization among different parallel threads is
considered for information sharing. Parallel slowdown on
identical machines is studied in [24], while they consider the
variation of total speed in sublinear trend. Scheduling with the
constraint of setup time is a well researched topic in recent
research. [25] extends the makespan minimization problem
of one job processed by one machine to that by multiple
machines with an arbitrary setup time. The lower bound of
the approximation ratio is proved to be around 1.582.

III. MODEL AND PRELIMINARIES

A. Problem Statement

The input of the job scheduling problem consists of a set
J of n jobs {1, 2, · · · , i, · · · , n} and a set M of m parallel
machines {1, 2, · · · , j · · · ,m}. Job i has a positive integer size
li ∈ N+. In this paper, we pay attention to identical machines
and uniform machines defined in Definition 1 progressively.

Definition 1 (Uniform Machines and Identical Machines). For
a job scheduling problem defined over n jobs and m machines,
the machines are uniform if each machine j is associated
with a specific processing speed sj ∈ N+, and therefore the
processing time of each job i on machine j is given by li/sj .
In particular, a set of uniform machines is identical if for some
number s ∈ N+, sj = s holds for each machine j.

Each job i consists of a set Bi = {bi1, bi2, · · · , bik, · · · , bini
}

of ni ∈ N+ subjobs with sizes {lik}k∈[ni]. It is assumed that
the sizes of subjobs and the related job satisfy

∑ni

k=1 l
i
k = li.

Different subjobs of a job are allowed to be scheduled on
different machines, while each single subjob can be only
assigned to one machine exactly. For each machine j, subjobs
allocated to machine j are processed in a non-preemptive
way. The objective is to find a schedule to minimize the
total makespan, namely the time to complete all the jobs. Our
study on job scheduling for makespan minimization includes
two specific settings, synchronization constraint and parallel
slowdown, formulized as follow.

a) Synchronization constraint: Consider the case where
the subjobs of job i are allocated to parallel machines. Let Bij
be the set of subjobs of job i that are allocated to machine
j. When Bij ̸= ∅, all the subjobs in Bij are required to be
processed continuously. For each non-empty Bij , the starting

time of Bij is denoted by tsij , namely, the earliest time when
the subjobs of job i start to be processed on machine j. The
scheduling algorithm is required to synchronize tsij for all Bij
of each job i, which means to ensure that tsij = ti for ti only
depends on job i over all the machines j with Bij ̸= ∅.

b) Parallel slowdown: When the subjobs of a same job
i are distributed over ei ∈ N+ machines, the actual speed of
each machine j processing the subjob set Bij is lower than the
inherent speed sj of machine j by a factor of g(ei), where
g : N+ 7→ (0, 1] is referred to as the slowdown function. The
slowdown function is shown in Equation (1):

g(ei) = 1− δ · (ei − 1), ei ∈ [1,
δ + 1

δ
), (1)

where δ is the slowdown factor with δ ∈ (0, 1).
Taking both the synchronization constraint and parallel

slowdown into consideration, the processing time tpij and the
finishing time Ci

j of job i on machine j can be expressed as

tpij =

∑
bik∈Bi

j
lik

sij · g(ei)
, Ci

j = ti + tpij . (2)

Then the makespan can be formulated as Equation (3):

Cmax = max
i∈[n]

max
j∈[m]

Ci
j . (3)

Therefore, the objective of our study is to minimize Equa-
tion (3). The notations are summarized in Table I for reference.

TABLE I
DEFINITIONS AND NOTATIONS

Symbols Definitions

n, m The number of jobs, the number of machines.
bik , ni The k-th subjob of job i, the number of subjobs of job i.
sj The processing speed of machine j.

li, lik The size of job i, the size of subjob bik .
ei The number of machines executing job i.

J , M The set of jobs, the set of machines.
Bi The set of subjobs {bi1, bi2, · · · , bini

} of job i.
Mi The set of machines {i1, i2, · · · , iei} for job i.
Bi
j The set of subjobs of job i allocated to machine j.

g(·), δ The slowdown function, the slowdown factor.

tsij , tpij The time to start processing Bi
j , the time to process Bi

j .
ti, tpi The time to start processing job i, the time to process job i.
Ci

j The finishing time of machine j on job i.
Cj The finishing time of machine j.

B. Triplet Notations and Preliminaries

To clearly represent different job scheduling problems, we
adopt the three-field notations [26], [27]in the form of α|β|γ,
where α represents the machine environment, β specifies the
processing characteristics and constraints, and γ denotes the
objective(s). We express the identical machines by α = P and
uniform machines by α = Q. For processing characteristics
and constraints, we use β = {sync, slow} to show synchro-
nization constraint and parallel slowdown, and β = ◦ for the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2023 at 08:16:33 UTC from IEEE Xplore. Restrictions apply.

scenario where each job should be entirely allocated to a single
machine.1 The objective considered in our paper is makespan
minimization, which is denoted by γ = Cmax.

To solve Q||Cmax, a well-known technique is the 2-
approximation algorithm Largest Processing-Time-first (LPT),
presented in [28]. LPT considers the jobs in a non-increasing
order of the sizes and allocates each job to the machine with
the earliest completion time. Similar to the existing literature in
job scheduling (e.g. [29]–[32]), in this paper we only consider
the machines with geometrically separable speeds, which is
illustrated in Definition 2 and Lemma 1.

Definition 2 (Geometrically Separable Speeds [29]). Speeds
of uniform machines are said to be geometrically separable if
maxj∈[m] sj ≤ α ·m ·minj∈[m] sj , where α is constant.

Lemma 1 ([29]). When the speeds of the machines are
geometrically separable, one can partition the machines into
at most ⌈logm⌉ groups so that in each group, the fastest
machine is at most two times faster than the slowest one.

C. Complexity Analysis

The synchronization constraint distinguishes our work from
the existing works which allow subjobs to be processed at any
time (e.g. [33]). In particular, consider the case that the alloca-
tion of the jobs to the machines is fixed by an adversary. Then
the induced scheduling problem, which requires determining
tsij , is proved to be hard to approximate in Lemma 2.

Lemma 2. The scheduling problem induced by fixed job
allocation has no O

(
n

2(log n)3/4+ϵ

)
-approximation for any ϵ > 0

under the assumption that NP ̸= BPTIME
(
2(logn)O(1))

.

Proof. We make reduction from the graph coloring problem.
Given an instance of the coloring problem on a graph G =
(V,E) with n nodes and m edges, we construct an instance
I of the induced scheduling problem as follows. For each
node i (resp. edge j), we add a job (resp. machine) to I. The
speeds of all the machines are set to 1. For a pair of nodes
{i, i′} ∈ V × V , if they are connected by an edge j in E, we
allocate two subjobs of jobs i and i′ to machine j, respectively.
The size of each subjob of job i is set to g(deg(i)), where
deg(i) represents the degree of node i in graph G. Such a
setting is consistent as deg(i) ≤ m holds for each node i, and
it ensures that the processing time of each subjob on machine
is 1. Such an instance I can be built in polynomial time.

Given a feasible solution of the instance I with makespan
LB, we build a solution of the original graph coloring problem
as follow. For each job i, if its subjobs start at time ti, we
color the corresponding node i with (ti + 1)-th color. Such
a coloring is feasible since for two nodes i, i′ connected by
edge j, the corresponding jobs cannot start simultaneously for
they share the machine j. Furthermore, our setting on the sizes
of the subjobs ensures that each color ranging from 1 to LB

is allocated to at least one node. Thus, we obtain a feasible

1The symbol ◦ is omitted in three-field notations for scheduling problems.

coloring of G with LB colors. By the inapproximability of
graph coloring [34], this proposition holds.

Lemma 2 indicates that one obstacle in scheduling the
subjobs of jobs under the synchronization constraint is the
difficulty in deciding the processing order of the jobs.

IV. SCHEDULING JOBS SEQUENTIALLY

We first consider a simple technique scheduling the job
integrally, namely, allocating each job to a single machine.
In such a case, one can adopt the existing algorithms for
job scheduling to choose the machine for each job. The
approximation ratio analysis is presented in Theorem 1.

Theorem 1. Q|sync, slow|Cmax has a (β ·max
i

ni)-approxi-
mation algorithm, if Q||Cmax admits a β ≥ 1 approximation.

Proof. For a given instance I of Q|sync, slow|Cmax, let I ′
be the problem instance of Q||Cmax over the same sets of
jobs and machines, and I∗ be the relaxed version of I where
subjobs can be processed at any time and g(x) ≡ 1. Denote the
optimal makespan of I, I ′ and I∗ by OPT, OPT′, and OPT∗,
respectively. It is easy to see that OPT ≤ OPT∗. We prove
this proposition by showing that OPT′ ≤ maxi ni · OPT∗. In
particular, we construct a feasible solution Ŝ of I ′ based on the
optimal solution S∗ of I∗ in the following way. For each job i,
the solution Ŝ allocates it to an arbitrary machine j satisfying∑

k,bik∈Bi
j
lik ≥ li

ni
in S∗. By the pigeonhole principle, such a

machine j always exists. As a result, the load of each machine
in Ŝ is at most maxi ni-times larger than the load of the same
machine in S∗. Therefore, this proposition holds.

With the 8-approximate algorithm ASSIGN-R and Theo-
rem 1, Corollary 1 can be directly inferred as follow.

Corollary 1. One can obtain an
(
2 ·maxi ni

)
-approximation

result for Q|sync, slow|Cmax in polynomial time.

The algorithm guaranteed in Corollary 1, UNITED-LPT, is
described in Algorithm 1. Here the Boolean variable xi

j ∈
{0, 1} represents whether a job i is allocated to machine j.

Algorithm 1: UNITED-LPT
Input: Jobs J , machines M
Output: x = {xi

j}i∈[n],j∈[m]

1 Initialize x← 0⃗;
2 Sort the jobs in a non-increasing order of lengths;
3 foreach job i ∈ J do

4 j∗ ← argminj

∑
i′<i l

i′ ·xi′
j

sj
; xi

j∗ ← 1;
5 //assign job to machine with earliest makespan

V. SCHEDULING ON IDENTICAL MACHINES

United-LPT proposed in Section IV does not exploit the
benefits of parallel processing and performs bad with more
subjobs. In this section, we introduce SARI algorithm for
parallel scheduling on identical machines with three steps:

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2023 at 08:16:33 UTC from IEEE Xplore. Restrictions apply.

Sequential Allocation with threshold as basic scheduling, Re-
filling to satisfy synchronization barrier, and Immigration for
parallel slowdown, achieving a constant approximation ratio.

A. Lower Bound Analysis

With identical machine, the speed of each machine j is s.
Without parallel slowdown, the lower bound LB of makespan
in any scheduling must be restricted by Equation (4):

LB = max

{∑
i l

i

m · s
,max

i

maxk l
i
k

s

}
, (4)

where the first term represents the average processing time
per machine, and the second term represents the processing
time of the largest subjob. Under the best condition, LB can
be reached as an optimal solution. Let OPT be an optimal
solution of P |sync,slow|Cmax. LB ≤ OPT always holds.

From Equation (1), the benefit of parallel processing may
be lessened by parallel slowdown, described in Lemma 3.

Lemma 3. The best number of identical machines processing
one job is ⌊ δ+1

2δ ⌋ or ⌈ δ+1
2δ ⌉ if arbitrarily splittable.

Proof. To minimize the processing time tpi of job i over
identical machines, one should balance the load over the
machines chosen for job i. Assume that job i is split evenly
over ei machines, then on each of these machines j, the pro-
cessing time of job i is f(ei) =

1
ei·[1−δ(ei−1)] . The derivative

of f(ei) indicates that tpi is minimized when d
dei

f(ei) =

− 1+δ−2δ·ei
e2i ·[1−δ(ei−1)]2

= 0, giving the desired result.

B. Sequential Allocation with Threshold

We first assign subjobs to machines without taking the
synchronization constraint and parallel slowdown into consid-
eration. The algorithm Sequential Allocation with Threshold
(SA), as shown in Algorithm 2, packs subjobs over machines
in sequence [35]. Once the total processing time of the current
machine exceeds LB, SA proceeds to allocate remaining sub-
jobs to the next machine. We define Sj , j ∈ [m] as a queue
storing the sequence of subjobs allocated to the machine j.
With Equation (1), the guarantee of SA is cast in Lemma 4.

Algorithm 2: Sequential Allocation with Threshold

Input: Jobs J , subjobs Bi for each job i, machines P ,
processing speed s, threshold LB

Output: The scheduling queue on each machine j
S1, S2, · · · , Sm

1 Initialize C ← 0; j ← 0; Sj ← ∅ for each j;
2 foreach job i do
3 foreach subjob bik do
4 if C > LB then //C counts current workload
5 j ← j + 1; //go to next machine
6 Reset C ← 0;

7 Sj ← Sj ∪ {bik} and update C ← C + lik/s;

Lemma 4. Sequential Allocation with Threshold always gen-
erates a feasible scheduling plan with Cmax ∈ [LB, 2LB].

C. Refilling with Synchronization Constraint

Based on SA, a 2LB scheduling plan without synchroniza-
tion constraint is given. Next, we concentrate on rescheduling
the previous plan to satisfy synchronization constraint.

Refilling has two stages: in the first stage, we refill the
machines according to Refilling Rules to guarantee a 3LB upper
bound of makespan, while in the second stage we reduce this
3LB upper bound to 2LB by Switching Rules.

Refilling Rules: For each job i, if subjobs Biiei scheduled on
the last machine assigned to one job satisfy

∑
k,bik∈Bi

iei

lik <

sLB (ei > 1), reschedule Biiei to the end of the queue Si1 of
the first machine assigned to the job. After that, reverse the
sequence of Si1 if the job i does not satisfy the synchronization
constraint. For instance, in Figure 4, b24 ∈ B23 and b32 ∈ B34
are scheduled on the last machine. They are rescheduled to
machines 1 and 3. Job 2 does not satisfy the synchronization
constraint and the queue S1 on machine 1, the first machine
allocated to job 2, is reversed. Thus we have Lemma 5.

2LB

time

p4p1 p2 p3

LB

2LB

...

b1b
1b1b
1

b1b
2b1b
2

b4b
2b4b
2 b2b

2
b2b
2

b3b
2
b3b
2

b3b2b
3b2

b1b
3b1b
3

...

time

p4p1 p2 p3

LB

2LB

b4b
2b4b
2

b1b
2b1b
2

b1b
1b1b
1 b2b

2
b2b
2

b3b
2
b3b
2

b1b
3b1b
3

b3b2b
3b2

time

p4p1 p2 p3

LB

...

b1b
2b1b
2

b1b
1b1b
1

b3b
2
b3b
2

b2b
2
b2b
2

b1b
3b1b
3

b4b
2b4b
2 b3b2b

3b2

Fig. 4. The first stage of the refilling algorithm

Lemma 5. Refilling after the first stage satisfies the synchro-
nization constraint with Cmax ≤ 3LB.

Proof. With Lemma 4, Cmax is lower than 2LB at first. After
the first stage, the finishing time Cj of any machine j refilled
with Biiei is lower than 3LB as the processing time of Biiei
is lower than LB. As for one job against the synchronization
constraint, after the first stage, all related machinesMi\{iei}
start processing at time 0 except the first allocated machine
i1 because there may be other job(s) completely scheduled
on machine i1 before the current job i. The reverse operation
satisfies the synchronization of the job i without violating that
of other job(s). Then the proposition holds.

Switching Rules: First, reschedule all subjobs on any ma-
chine j satisfying Cj < LB to other machines. This is to better
utilize machines. Only three cases have to deal with as follow.

• In the first case, subjobs of the same job on one machine
with Cj < LB are rescheduled. There are other subjobs of
the same job on the next machine, to which the subjobs
are rescheduled. In Figure 5, b31 and b34 on machine 2 are
rescheduled to the end of b33 on machine 3.

• In the second case, subjobs of different jobs on one
machine with Cj < LB are rescheduled. There are other

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2023 at 08:16:33 UTC from IEEE Xplore. Restrictions apply.

subjobs on the next machine sharing the same job with
the first subjob, to which all subjobs are rescheduled,
enabling each job to process continuously. In Figure 6,
b41 and b31 are rescheduled to the end of b43 on machine 4.

• In the third case, subjobs of job(s) allocated to a single
machine with Cj < LB are rescheduled. There are no
subjob of any same job on the next machine. Then the
subjobs are rescheduled to machine 1. In Figure 7, b31 is
rescheduled to the end of b11 on machine 1.

2LB

time

p4p1 p2 p3

LB

...

b1b
2b1b
2

b1b
1b1b
1

b1b
4b4b1b
4

b2b
2
b2b
2

b1b
3b1b
3

b4b
3b4b
3

b3b2b
3b2

b3b
3b3b
3

...

2LB

time

p4p1 p2 p3

LB b1b
2b1b
2

b1b
1b1b
1

b1b
4b4b1b
4

b2b
2
b2b
2

b1b
3b1b
3

b4b
3b4b
3

b3b2b
3b2

b3b
3b3b
3

2LB

time

p4p1 p2 p3

LB b1b
2b1b
2

b1b
1b1b
1

b1b
4b4b1b
4

b2b
2
b2b
2

b1b
3b1b
3

b4b
3b4b
3

b3b2b
3b2

b3b
3b3b
3

...

Fig. 5. Case 1 of the second stage of the refilling algorithm

...

2LB

time

p4p1 p2 p3

LB
b1b
2b1b
2

b1b
1b1b
1

b3b
2b3b
2

b2b
2
b2b
2

b4b
2b4b
2

b1b
3b1b
3

b1b
4b4b1b
4

b3b
4b3b
4

2LB

time

p4p1 p2 p3

LB
b1b
2b1b
2

b1b
1b1b
1

b3b
2b3b
2

b2b
2
b2b
2

b4b
2b4b
2

b1b
3b1b
3

b1b
4b4b1b
4

b3b
4b3b
4

2LB

time

p4p1 p2 p3

LB

...

b1b
2b1b
2

b1b
1b1b
1

b3b
2b3b
2

b2b
2
b2b
2

b4b
2b4b
2

b1b
3b1b
3

b1b
4b4b1b
4

b3b
4b3b
4

b2b
4b2b
4

b2b
4
b2b
4

b2b
4
b2b
4

...

Fig. 6. Case 2 of the second stage of the refilling algorithm

...

2LB

time

p4p1 p2 p3

LB
b1b
2b1b
2

b1b
1b1b
1

b3b
2b3b
2

b2b
2
b2b
2

b4b
2b4b
2

b1b
3b1b
3

b1b
4b4b1b
4

2LB

time

p4p1 p2 p3

LB
b3b
2b3b
2

b2b
2
b2b
2

b4b
2b4b
2

b1b
3b1b
3
b1b
4b4b1b
4

2LB

time

p4p1 p2 p3

LB

...

b1b
2b1b
2

b1b
1b1b
1

b3b
2b3b
2

b2b
2
b2b
2

b4b
2b4b
2

b1b
3b1b
3
b1b
4b4b1b
4

...

b1b
2b1b
2

b1b
1b1b
1

b1b
2

b1b
1

Fig. 7. Case 3 of the second stage of the refilling algorithm

After the first step of switching, Cj for any machine j with
jobs to process is greater than LB. Until now, the operations
above in refilling and switching do not involve new machines
for jobs and do not violate the synchronization constraint
finally. Then Lemmas 6 and 7 are given and proved as follow.

Lemma 6. Once there is a machine with Cj ≥ 2LB, there
must be a machine idle.

Proof. Assume that there are x machines with Cj ≥ 2LB, y
machines LB ≤ Cj < 2LB, z idle machines. Then we have:{

x+ y + z = m,
2x+ y ≤ m,

⇒ z ≥ x, (5)

where the first equation in Equation (5) represents the total
number of the machines should be m, while the second one
represents

∑
Cj of the two types of machines is no greater

than mLB. Thus we have the conclusion.

Lemma 7. For machine j with Cj > 2LB, the subjob queue
Sj can always be split into two, one with LB ≤ C ′

j ≤ 2LB,
and rescheduled on two machines satisfying synchronization.

Proof. We first prove that a sequential processed job i with
tpi ≥ LB cannot share the same machine with a parallel
processed job i′ after SA and refilling. After SA, such a
situation may exist only when machine j is machine iei
of some job i. However, refilling removes Biiei away, while
switching does not remove the sequential processed job away
or bring other parallel processed job in with switching rules.
As for other sequential processed jobs with tpi ≥ LB merged
from parallel processed jobs due to refilling and switching,
they have ti = 0, which means no other jobs including parallel
processed ones start before them. Therefore the proposition
holds. Now that the processing time of the largest subjob is
at most LB, there must be at least one gap at LB to 2LB. Then
the subjob queue Sj can be split at the gap. Only two cases,
gaps within subjobs of different jobs or the same job, exist.

• First, search for a gap satisfying the first case. The latter
part of the queue Sj can be directly rescheduled to an
idle machine, while the former part remains unchanged.
No synchronization constraint of any job is violated.

• If no gap satisfying the first case, we consider the second
case. There is a job i with tpij > LB covering the whole
schedule of [LB, 2LB]. With the above proposition, either
job i is a parallel processed job with ti = 0 or no parallel
processed job starts before job i on machine j. The latter
part of the queue Sj can be directly rescheduled to an
idle machine, while the former part reverses the sequence
on current machine j. Synchronization constraint is not
violated in this two cases.

Therefore, Lemma 7 is proved. An instance is given in
Figure 8. The gap between b21 and b22 is within LB and 2LB.
Splitting here produces two queues with Cj , C

′
j < 2LB.

Second, continue rescheduling subjobs on machines with
Cj > 2LB until there is no Cj > 2LB following Lemmas 6
and 7. The rescheduling on previous three cases is presented.

• In the first case, subjobs on machine 3 are split and b34 is
rescheduled to machine 2 (Figure 5).

• In the second case, subjobs on machine 4 are split and
b31 is rescheduled to machine 3 (Figure 6).

• In the third case, subjobs on machine 1 are split and b31
is rescheduled to machine 3 (Figure 7).

Lemma 8. Refilling satisfies the synchronization constraint
with 2-approximation, which is proved to be a tight ratio.

Proof. LB is tight as an OPT with m identical jobs and m
machines, while 2LB is tight as an OPT with m + 1 identical
indivisible jobs and m machines (m→∞).

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2023 at 08:16:33 UTC from IEEE Xplore. Restrictions apply.

D. Scheduling with Parallel Slowdown

In this subsection, the influence of parallel slowdown is
discussed. According to Lemma 3, the parallel processing can
be divided into two cases by ei, processing with ei ∈ [1, δ+1

2δ]
machines and processing with ei ∈ (δ+1

2δ , δ+1
δ) machines.

In the first case, we have Lemma 9.

Lemma 9. The parallel slowdown contributes to the increase
of Cmax within 2 times when ei ∈ [1, δ+1

2δ].

Proof. When the parallel number ei increases, the slowdown
coefficient g(ei) decreases. When ei =

δ+1
2δ , we have:

g(ei) = 1− δ(
δ + 1

2δ
− 1) =

1 + δ

2
>

1

2
, (6)

which implies that no machine j will slow down by more than
half when processing any job i. Thus Cmax will only double
at most compared with before.

In the second case, we propose Algorithm 3 to convert the
case to the first one. As for a job i of with ei ∈ (δ+1

2δ , δ+1
δ), we

reschedule subjobs on half of the machines with lower loads
of job i to those with higher loads one to one, processed after
those on the machines before. Then we have Lemma 10.

Algorithm 3: Immigration Algorithm

Input: Job set J , machine set Mi, ei for each job i,
subjobs Bi for each job i, the scheduling queue
on each machine j: S1, S2, · · · , Sm

Output: The new scheduling queues S′
1, S

′
2, · · · , S′

m

1 foreach machine j do
2 Initialize S′

j ← Sj ;

3 foreach job i do
4 if ei > δ+1

2δ then
5 Sort Mi in non-increasing order of tpij ;
6 Split Mi to first half Mi and second half Mi′ ;
7 foreach machine ij′ ∈Mi′ do
8 S′

ij
← S′

ij
∪ Bii′j ∀ machine ij ∈Mi;

9 S′
i′j
← S′

i′j
\Bii′j , Mi ←Mi\{ij};

Lemma 10. The parallel slowdown contributes to the increase
of Cmax within 4 times when ei ∈ (δ+1

2δ , δ+1
δ).

Proof. The converting from the second case to the first case
increases Cj for each retained machine j by no more than
2 times because the new added loads Bij′ are lower than the
original loads Bij . Therefore, the increase of Cmax is lower
than 2 times. With Lemma 9, the increase of Cmax is lower
than 4 times after considering parallel slowdown.

Combining Lemma 8 with Lemma 10, we obtain our main
result for scheduling on identical machine.

Theorem 2. For the P |sync,slow|Cmax problem, SARI algo-
rithm can guarantee a constant approximation ratio of 8.

VI. SCHEDULING ON UNIFORM MACHINES

In this section, we consider scheduling on uniform ma-
chines. Our key technique, wrapping, is to reduce the problem
on uniform machines to the one on identical machines so that
our previous techniques for identical machines can be applied.

A. Wrapping: Machine Classification

Due to the speed variance of uniform machines, wrap-
ping classifies machines with similar speeds into qm bundles
{B1, · · · , Bq, · · · , Bqm} so that for each bundle Bq , we have:

2q−1 ≤ sj < 2q, ∀j ∈ Bq . (7)

The size of each bundle Bq is denoted by xq .

Algorithm 4: Bundle Partitioning Algorithm
Input: Machine set M, processing speed sj for each j
Output: Bundles group B1, B2, · · · , Bqm−1, Bqm

1 foreach machine j do
2 Initialize Bq ← ∅ for q ∈ N+;
3 Find q ∈ N+ satisfying 2q−1 ≤ sj < 2q;
4 Bq ← Bq ∪ {j};

2LB

time

p1 pj

LB

... p1 ...

b1b
1b1b
1

b2b2b
2b2

b2b
2

b1b
3b1b
3

b1b
2b2b1b
2

time

2LB

LB

b1b
3b1b
3

b1b
2b2b1b
2

b2b2b
2b2

b2b
2

b1b
1b1b
1

b1b
3

b1b
2

b2b
2

b1b
1

Fig. 8. Split the subjob queue

speed

 r3

B3

time

job

1
job

3 job

qm

speed

 r1

B1

speed

rqm

Bqm

speed

r2

B2

job

2

job

qm+1

...

...

speed

rqm-1

Bqm-1

job

qm-1

job

qm+2

Fig. 9. Job allocation by LPT

B. Wrapping: Matching Jobs to Bundles

After partitioning the machines into qm bundles, we first
match each job to a bundle within O(logm) bundles according
to Lemma 1. Thus we have Lemma 11.

Lemma 11. Requiring each job to be assigned to a bundle of
machines loses at most ⌈logm⌉ in the approximation ratio.

Proof. This proposition can be proved using the pigeonhole
principle in a similar way with Theorem 1. Specifically,
for each job i, there must exist a bundle Bq such that∑

j∈Bq
lei,∗j ≥ 1

⌈logm⌉ l
i, where lei,∗j represents the size of

the fragment of job i on machine j induced by the optimal
schedule. Now we move the fragments on the machines in
other bundles to Bq by the size of the fragment of job i on
each machine j ∈ Bq by a factor of li∑

j∈Bq
lei,∗j

. In this way,

we obtain a feasible scheduling satisfying the constraint that
each job can be allocated to the machines in a bundle, and

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2023 at 08:16:33 UTC from IEEE Xplore. Restrictions apply.

(a) SARI: Sensitivity of δ (b) SARI: Average number of subjobs per job (c) SARI: Average job size (An instance)

Fig. 10. Experiment results for SARI on identical machines: Influence of slowdown, number of subjobs and job size

Cmax of such a scheduling is at most ⌈logm⌉-times greater
than the optimal scheduling without bundles partitioning.

We consider machines in each bundle Bq to have a unified
speed 2q−1, which incurs a loss of at most 2 in the approxima-
tion ratio (formally cast in Lemma 12). Then the processing
capability of a bundle can be rewritten as rq = 2q−1 · xq .

Lemma 12. Approximating the speed sj of all machines j in
Bq to be 2q−1 increases Cmax by a factor of at most 2.

Proof. According to Equation (7), in one bundle, we have
sj ≤ 2 ·minj,j∈Bq

sj , which implies that the processing time
will increase by less than two times. Therefore, Cmax of OPT
increases by at most 2 times.

To match each job to a machine bundle, UNITED-LPT is
adopted and runs over machine bundles rather than singleton
machines similar to Algorithm 1. Then there is Lemma 13.
A scheduling instance is given in Figure 9. All the jobs are
sorted first and scheduled in a non-increasing order. The first
qm jobs are scheduled on qm machines, then job qm + 1 and
qm +2 are scheduled on the bundle with earliest Cj greedily.

Lemma 13. Algorithm 1 introduces 2-approximation to UWS.

C. Subjobs Allocation to Machines

After matching the jobs to bundles, we proceed to allocate
the subjobs to machines. As sj for each machine j in the
bundle is unified to 2q , the problem of job allocation in each
machine bundle is reduced to scheduling on identical machines
as Section V. The L̂B in each bundle Bq is formulated as:

L̂B = max

{∑
i l

i

rq
,max

i

xq maxk l
i
k

rq

}
, i ∈ Bq. (8)

Then the scheduling problem can be solved based on the meth-
ods in Section V. Together with Theorem 2 and lemmas 11
to 13, our main result is obtained as Theorem 3.

Theorem 3. For the Q|sync,slow|Cmax problem, UWS algo-
rithm has an approximation ratio of 32⌈logm⌉.

VII. PERFORMANCE EVALUATION

A. Experiments Settings

We conduct a series of numerical experiments with ablation
study in the scenarios of scheduling on identical and uniform
machines to analyze the performance of SARI and UWS. Each
algorithm is compared with two baseline algorithms, United
LPT and FIFO, and lower bound. United LPT is presented in
Algorithm 1, scheduling the entire jobs greedily by Cj . FIFO
schedules the jobs in sequence and always tries to allocate
subjobs of one job to as many machines as possible with
ei ∈ [1, δ+1

2δ]. The lower bound is Equation (4) for identical
machine and Equation (8) for uniform machine. Specifically
for uniform machine, two lower bounds before and after
bundle partitioning are computed to analyze its influence.

The datasets of jobs including subjobs are synthetic to
better observe the performance of different methods. We
generate random variables like job size, subjob size and subjob
number from Gaussian distribution. Defaults of variables are
set as follow if not specified: n = 100, m = 10, ∀i:
ni = 10, li = 500, δ = 0.06; for identical machines
experiments ∀i, j : sij = 1; for uniform machines experiments
∀i, j : E(sij) = 5. In order to avoid the influence of random
factors, each group of experiments is the average outcome of
100 repeated experiments, as shown in Figure 10(c).

B. Results and Discussions

Results and Discussions for Identical Machines. Figures 10
and 11 show the performance of SARI, United LPT, and FIFO
on identical machines with different inputs and parameters.

Figures 10(a) and 10(b) present the influence of the slow-
down coefficient δ and the subjob number ni on makespan
Cmax. Lower bound remains the same as a theoretical optimal
result. United LPT also remains the same because parallel
processing is not adopted. For FIFO, the increase of δ con-
tributes to fast increase of Cmax, while the increase of ni

first increases Cmax due to the constraint of discrete subjobs,
then decreases it with more small and flexible subjobs. On the
contrast, SARI performs well in all situations, with small and
stable Cmax increasing caused by slowdown and decreasing
with more subjobs, which implies the advantages of SARI in

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2023 at 08:16:33 UTC from IEEE Xplore. Restrictions apply.

(a) SARI: Average job size (b) SARI: Variance of subjob size (c) SARI: Variance of subjob No. (d) SARI: Graphic Model

Fig. 11. Experiment results for SARI on identical machines: Influence of job size, subjob size and subjob number; 3-dimention relationship for the number
of machines and jobs versus makespan

(a) UWS: Sensitivity of δ (b) UWS: Average number of subjobs per job (c) UWS: Variance of machine speed

Fig. 12. Experiment results for UWS on uniform machines: Influence of slowdown, subjob number and machine speed

slowdown and subjobs. Figure 10(c) gives the job size li used
in one group of experiments and related Cmax as an instance.

Figures 11(a) to 11(c) illustrate the influence of average li,
variance of li and variance of ni on Cmax. SARI is always the
best and reaches about a 2-approximation ratio compared with
the lower bound. Figure 11(a) shows that both the lower bound
and Cmax of algorithms increase linearly w. r. t. the average
li, which is an inevitable determining factor in this situation.
Figures 11(b) and 11(c) shows that variances of lik and ni have
almost no influence on SARI, similar to United LPT, implying
that SARI can well deal with the two factors. Meanwhile,
FIFO performs worse with the increase of the variance of lik
as a large subjob can significantly affect Cmax. Figure 11(d)
shows the variation of Cmax with both n and m varying from
10 to 100. In general, more machines contribute to less Cmax

under the same condition and more jobs contribute to larger
Cmax. United LPT performs well when n is much larger than
m, especially when the number of jobs is alike, while FIFO
performs well only when m is much larger than n and δ
is relatively small. SARI achieves good results with various
inputs balancing both sequential and parallel processing.

Results and Discussions for Uniform Machines. Figure 12
present the performance of UWS compared to United LPT,
FIFO, and lower bounds with various inputs and parameters.
LB after partitioning admits an increase less than 1.5, better

than the theoretical guarantee. Figures 12(a) and 12(b) show a
similar conclusion of UWS on δ and ni as SARI, which out-

performs United LPT and FIFO. Cmax of UWS increases by
a small ratio along with the increase of δ and ni. Figure 12(c)
speculates that the performance of UWS gets better when
the machine speed variance gets larger, suggesting wrapping
effectively eliminates the disadvantage from the differences of
sj . The results of the experiment reflect that UWS has a better
experimental approximation ratio around 2 than theory.

VIII. CONCLUSIONS

In this paper, we study a new variation of uniform machine
scheduling problem and develop UWS algorithm, which is a
two-layer optimization design with an approximation ratio of
O(logm), including Wrapping for the outer layer to cluster
machines with similar speeds by partitioning and Refilling
for the inner individual layer to unite subjobs of one job,
combining the advantages of both sequential and parallel
processing, such that the overall scheduling framework can
output a sub-optimal solution. The performance is guaranteed
by theoretical proofs and numerical experiments.

ACKNOWLEDGMENT

This work was supported by National Key R&D Program
of China [2020YFB1707900]; National Natural Science Foun-
dation of China [62272302], Shanghai Municipal Science and
Technology Major Project [2021SHZDZX0102] and Huawei
Cloud [TC20220718012]. The authors would like to thank
Rongpeng Chen for his contribution on this paper. Xiaofeng
Gao is the corresponding author.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2023 at 08:16:33 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud computing: An overview,” in
IEEE international conference on cloud computing, 2009, pp. 626–631.

[2] B. Jennings and R. Stadler, “Resource management in clouds: Survey
and research challenges,” Journal of Network and Systems Management,
vol. 23, no. 3, pp. 567–619, 2015.

[3] Y. Sun, F. Lin, and H. Xu, “Multi-objective optimization of resource
scheduling in fog computing using an improved nsga-ii,” Wireless
Personal Communications, vol. 102, no. 2, pp. 1369–1385, 2018.

[4] M. Pak and S. Kim, “A review of deep learning in image recognition,”
in IEEE international conference on computer applications and infor-
mation processing technology (CAIPT), 2017, pp. 1–3.

[5] S.-H. Lin, M. Paolieri, C.-F. Chou, and L. Golubchik, “A model-based
approach to streamlining distributed training for asynchronous sgd,” in
IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, 2018, pp. 306–318.

[6] S. Wang, D. Li, and J. Geng, “Geryon: Accelerating distributed cnn
training by network-level flow scheduling,” in IEEE Conference on
Computer Communications, 2020, pp. 1678–1687.

[7] K. Jansen, M. Maack, and A. Mäcker, “Scheduling on (un-)related ma-
chines with setup times,” in IEEE International Parallel and Distributed
Processing Symposium, 2019, pp. 145–154.

[8] A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho,
H. Zhang, G. R. Ganger, and E. P. Xing, “Pollux: Co-adaptive cluster
scheduling for goodput-optimized deep learning,” in USENIX Sympo-
sium on Operating Systems Design and Implementation, 2021.

[9] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and
P. Wong, “Theory and practice in parallel job scheduling,” in Workshop
on Job Scheduling Strategies for Parallel Processing, 1997, pp. 1–34.

[10] L. G. Valiant, “A bridging model for parallel computation,” Communi-
cations of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[11] F. N. Afrati and J. D. Ullman, “Optimizing multiway joins in a
map-reduce environment,” IEEE Transactions on Knowledge and Data
Engineering, vol. 23, pp. 1282––1298, 2011.

[12] D. Fotakis, I. Milis, O. Papadigenopoulos, V. Vassalos, and G. Zois,
“Scheduling mapreduce jobs on identical and unrelated processors,”
Computers and Industrial Engineering, vol. 64, pp. 754—-782, 2020.

[13] K. Aziz, D. Zaidouni, and M. Bellafkih, “Leveraging resource manage-
ment for efficient performance of apache spark,” J. Big Data, vol. 6,
p. 78, 2019.

[14] X. Zhan, Y. Bao, C. Bienia, and K. Li, “Parsec3. 0: A multicore
benchmark suite with network stacks and splash-2x,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 5, pp. 1–16, 2017.

[15] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM
Journal of Applied Mathematics, vol. 17, no. 2, pp. 416–429, 1969.

[16] J. Aspnes, Y. Azar, A. Fiat, S. A. Plotkin, and O. Waarts, “On-
line routing of virtual circuits with applications to load balancing and
machine scheduling,” Journal of the ACM, vol. 44, no. 3, pp. 486–504,
1997.

[17] K. Banerjee, “An approximate algorithm for the partitionable indepen-
dent task scheduling problem,” Urbana, vol. 51, p. 61801, 1990.

[18] K. Jansen, “A (3/2+ ε) approximation algorithm for scheduling moldable
and non-moldable parallel tasks,” in ACM symposium on Parallelism in
algorithms and architectures, 2012, pp. 224–235.

[19] K. Jansen and F. Land, “Scheduling monotone moldable jobs in linear
time,” in IEEE International Parallel and Distributed Processing Sym-
posium, 2018, pp. 172–181.

[20] D. S. Hochbaum and D. B. Shmoys, “A polynomial approximation
scheme for scheduling on uniform processors: Using the dual approx-
imation approach,” SIAM Journal on Computing, vol. 17, no. 3, pp.
539–551, 1988.

[21] K. Jansen, “An eptas for scheduling jobs on uniform processors: using
an milp relaxation with a constant number of integral variables,” SIAM
Journal on Discrete Mathematics, vol. 24, no. 2, pp. 457–485, 2010.

[22] L. Teylo, L. Arantes, P. Sens, and L. M. de A. Drummond, “A hiberna-
tion aware dynamic scheduler for cloud environments,” in International
Conference on Parallel Processing, 2019, pp. 24:1–24:10.

[23] K. Jansen and D. Trystram, “Scheduling parallel jobs on heterogeneous
platforms,” Electronic Notes in Discrete Mathematics, vol. 55, pp. 9–12,
2016.

[24] B. Berg, R. Vesilo, and M. Harchol-Balter, “hesrpt: Parallel scheduling
to minimize mean slowdown,” Performance Evaluation, vol. 144, p.
102147, 2020.

[25] J. R. Correa, A. Marchetti-Spaccamela, J. Matuschke, L. Stougie,
O. Svensson, V. Verdugo, and J. Verschae, “Strong LP formulations
for scheduling splittable jobs on unrelated machines,” Math. Program.,
vol. 154, no. 1-2, pp. 305–328, 2015.

[26] E. L. Lawler, J. K. Lenstra, A. H. R. Kan, and D. B. Shmoys,
“Sequencing and scheduling: Algorithms and complexity,” Handbooks
in operations research and management science, vol. 4, pp. 445–522,
1993.

[27] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan, “Optimiza-
tion and approximation in deterministic sequencing and scheduling: a
survey,” in Annals of discrete mathematics, 1979, vol. 5, pp. 287–326.

[28] T. F. Gonzalez, O. H. Ibarra, and S. Sahni, “Bounds for LPT schedules
on uniform processors,” SIAM Journal of Computing, vol. 6, no. 1, pp.
155–166, 1977.

[29] F. A. Chudak and D. B. Shmoys, “Approximation algorithms for
precedence-constrained scheduling problems on parallel machines that
run at different speeds,” Journal of Algorithms, vol. 30, no. 2, pp. 323–
343, 1999.

[30] S. Li, “Scheduling to minimize total weighted completion time via time-
indexed linear programming relaxations,” SIAM J. Comput., vol. 49,
no. 4, 2020.

[31] S. Davies, J. Kulkarni, T. Rothvoss, J. Tarnawski, and Y. Zhang,
“Scheduling with communication delays via LP hierarchies and cluster-
ing II: weighted completion times on related machines,” in ACM-SIAM
Symposium on Discrete Algorithms, 2021, pp. 2958–2977.

[32] B. Maiti, R. Rajaraman, D. Stalfa, Z. Svitkina, and A. Vijayaragha-
van, “Scheduling precedence-constrained jobs on related machines with
communication delay,” in IEEE Annual Symposium on Foundations of
Computer Science, 2020, pp. 834–845.

[33] M. A. Deppert and K. Jansen, “Near-linear approximation algorithms
for scheduling problems with batch setup times,” in ACM Symposium
on Parallelism in Algorithms and Architectures, 2019, pp. 155–164.

[34] S. Khot and A. K. Ponnuswami, “Better inapproximability results for
maxclique, chromatic number and min-3lin-deletion,” in International
Colloquium on Automata, Languages and Programming, vol. 4051,
2006, pp. 226–237.

[35] M. A. Deppert and K. Jansen, “Near-linear approximation algorithms for
scheduling problems with batch setup times,” in ACM on Symposium on
Parallelism in Algorithms and Architectures, 2019, pp. 155–164.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2023 at 08:16:33 UTC from IEEE Xplore. Restrictions apply.

